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1. Introduction

Mandal et al. (2001) (hereafter referred to as Mandal

et al.) present a theoretical analysis of flattening in shear

zones under constant volume and derive relationships

between Sr, the ratio of pure to simple shear rates of

Ghosh and Ramberg (1976), Wk the kinematical vorticity

number of Ghosh (1987), Df, the length to width ratio of a

shear zone and a, the inclination of the shear zone normal

and the bulk compressive direction. Furthermore, they

consider separately the cases of a shear zone with perfectly

rigid and deformable boundaries. Several errors in the

analysis of Mandal et al. are presented here which indicate

that many of the conclusions of Mandal et al. regarding the

relationship between parameters in flattening shear zones

are incorrect. I use the same notation as Mandal et al. where

possible, however, their velocities (u,v) are denoted by

(vx,vy) because componential equations are used here.

2. Mandal et al.’s solution

2.1. Bulk stress field

Mandal et al. state that they are considering a shear zone

whose normal makes an angle a with the principal direction

of compressive stress and indicate that the normal (sn) and

shear stress (t) acting along the shear zone boundaries are

given by (their Eqs. (A7a) and (A7b)):

sn ¼ pcos2a ð1Þ

t ¼ 2psin2a ð2Þ

where:

p ¼ s1 2 s2=2 ð3Þ

as defined in the appendix of Mandal et al. and s1 and s2 are

the principal bulk stresses. The term p is variously described

as the ‘bulk differential compression’ or the ‘differential

compressive stress’. However, differential stress is defined

as the difference in magnitudes between the maximum and

minimum principal stresses (Price and Cosgrove, 1990, p. 7)

and is given as s1 2 s2 in the case of plane stress. I suspect

that Mandal et al. actually meant p to be the principal

compressive deviatoric stress component, which is correctly

given as s1 2 s2 and in which case the expressions for

normal and shear deviatoric stresses acting on the boundary

are correct.

2.2. Energy calculations

One of the basic premises of Mandal et al. is that the

theory is developed by “balancing the energy involved in

the flow within the shear zone with the work to be done

for the movement of the boundary walls”. This is a

statement of the first law of thermodynamics, however,

heat effects are ignored and body forces (e.g. due to gravity)

are assumed to be negligable. The mechanical power input

(i.e. work rate) is given by (Malvern, 1969, p. 227):

ð
S

FzvdS ð4Þ

where F is the traction or force acting along a surface (S)

enclosing the flow and v is the velocity. In three dimensions,

the surface S totally encloses the volume of fluid under

consideration, whereas in two dimensions S is a curve

totally enclosing an area of fluid. Mandal et al. erroneously

calculate the work rate for the flattening shear zone by only
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considering the work done along the upper and lower

surfaces of the shear zone. They mistakenly ignore the

contribution due to work done at the shear zone ends. S must

be a closed surface or curve.

From the definition of the stress tensor F ¼ sn on S,

where s is the stress tensor and n is the outward unit normal

vector so that:

ð
S
sn·vdS ¼

ð
S
svzndS ð5Þ

Applying the divergence theorem (see Schey (1997, p. 47)

for example) we have:

ð
S
sv·ndS ¼

ð
V
7·ðsvÞdV ð6Þ

This is the mathematical expression for the energy balance

used by Mandal et al. If Eq. (6) is to be of use, we need to

understand it at the component level. The lhs of Eq. (6) is:

ð
S
sijvinjdS ð7Þ

and the rhs is:

ð
V

› sijvi

� �

›xj

dV ð8Þ

¼
ð

V
sij

›vi

›xj

dV þ
ð

V
vi

›sij

›xj

dV ð9Þ

where the product rule is applied to get Eq. (9) and the

Einstein summation convention is used.

A few terms need to be defined. The velocity gradient

tensor is:

L ¼ Lij ¼
›vi

›xj

and the stretching (or rate of deformation) tensor is:

D ¼ Dij ¼
1

2
Lij þ Lji

� �

(Malvern, 1969, pp. 146–147). The consitutive equation of

an incompressible Newtonian fluid is:

sij ¼ 2hDij 2 dijp
p ð10Þ

where h is viscosity, dij is the Kronecker delta and p p is the

pressure term (usually denoted simply by p, but modified

here to avoid confusion with the principal deviatoric

compressive stress term of Mandal et al.) given as:

pp ¼
sii

m
ð11Þ

where m is the dimension under consideration.

Hence the first term of Eq. (9) is:

sij

›vi

›xj

¼ 2hDij 2 dijp
p

� �
Lij ð12Þ

¼ 2hDijLij ð13Þ

due to incompressibility (i.e. Lii ¼ 0 and Dii ¼ 0). For two

dimensions this gives:

ð
V
sij

›vi

›xj

dV ¼ 2h
ð

V
D2

xx þ D2
yy þ 2D2

xy

� �
dV ð14Þ

¼ 4h
ð

V
D2

xx þ 2D2
xy

� �
dV ð15Þ

which is equivalent to the expression used by Mandal et al.

to calculate the work rate inside the shear zone (i.e. their

Eq. (A1)) except that they denote D11 by exx etc. If

gravitational and inertial forces are ignored then the second

term of Eq. (9) evaluates to zero; however, this may not

always be the case for other materials and models. The

above discussion highlights that Eqs. (7) and (15) are equal

and it would be surprising if application of either gave

different expressions for the work rate, as appears to be the

case in the analysis of Mandal et al.

In producing a model for a constant volume flattening

shear zone, Mandal et al. begin with the model described by

Jaeger (1969, pp. 140–143), which is also considered by

Ramsay and Lisle (2000, pp. 998–999) and is referred to as

the ‘cream cake’ model. There are a number of problems

with Mandal et al.’s understanding of this model. Firstly one

of Mandal et al.’s basic premises is the assumption that “the

flow of material in response to flattening takes place along

the shear direction”, which would imply that vy ¼ 0, even

though the cream-cake model clearly includes non-zero

velocity components in both the x- and y-directions (see

Eqs. (1a) and (1b) of Mandal et al.). In addition to the error

of not considering the work rate at the shear zone ends (see

above), they are also in error when they calculate the work

done per unit time in bringing the rigid upper and lower

walls together due to flattening.

In the model of Mandal et al., a shear zone with rigid

boundaries is contained in an unspecified rigid material,

which is subject to bulk principal stresses of s1, s2 and p

and is oriented at a to the shear zone normal. It appears from

the expression given for the work done per unit time in

bringing the rigid walls together (their Eq. (A8)) that

Mandal et al. are assuming that the stress responsible for the

flattening deformation is constant along the shear zone

boundary (i.e. the normal component of p, given by

sn ¼ pcos2a). Using Eq. (7) for the upper wall we have:

ð
S
sijvinjdS ¼

ðl

2l
sijvinjdx ð16Þ

¼ 2lvbpcos2a ð17Þ

where vb is the velocity in the y-direction at y ¼ t, so that the

work rate for the upper and lower walls is:

¼ 4lvbpcos2a ð18Þ

and not the expression given by Mandal et al., which is

twice as large. However, this error may be related to the

error in defining p.

Furthermore, the assumption of Mandal et al. that the stress
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along the boundaries of the shear zone is constant is in error,

because a constant stress distribution cannot produce the

flattening flow they consider. Jaeger (1969, p. 142) gives an

expression for normal stress in the cream-cake model

(assuming that the pressure term ( p p) is zero at x ¼ ^l and

y ¼ ^ t), it varies in both the x- and y-directions and is given by:

syy ¼ sn ¼
3hsvb

2t3
3 t2 2 y2
� �

þ x2 2 l2
h i

ð19Þ

and is clearly variable in the x-direction at both the upper and

lower boundaries (i.e. y ¼ ^ t). It is physically impossible to

have a situation where the normal stress is constant on one side

of a boundary and variable on the other side as this is in

violation of Newton’s Third Law of Motion.

2.3. Summary

In this section I have pointed out several fundamental

errors associated with the analysis of Mandal et al. They are:

1. A confusion between differential and deviatoric stress.

2. Failing to calculate the work rate along the full curve

enclosing the fluid area in the shear zone.

3. Violation of Newton’s Third Law by equating a constant

normal stress with the variable normal stress required for

the flattening flow.

3. Correct solution

In light of the errors in Mandal et al.’s solution, it is

appropriate to give the correct theory here and assess

whether or not relationships of the type derived by Mandal

et al. can be deduced.

Jaeger (1969, pp. 140–142) gives the full solution for the

flattening flow:

vx ¼
3vbx t2 2 y2

� �
2t3

ð20Þ

vy ¼
vby y2 2 3t2

� �
2t3

ð21Þ

sxx ¼
3hsvb 3 t2 2 y2

� �
þ x2 2 l2

� 	
2t3

ð22Þ

syy ¼
3hsvb y2 2 t2 þ x2 2 l2

� 	
2t3

ð23Þ

sxy ¼ syx ¼
3hsvbxy

t3
ð24Þ

First the work rate due to forces along the closed curve

ABCD (where A ¼ (2 l,t), B ¼ (l,t), C ¼ (l, 2 t) and

D ¼ (2 l, 2 t)) are calculated, letting Q ¼ sijvinj for

conciseness:

ð
S
sijvinjdS ¼

ðB

A
Qdx þ

ðC

B
Qdy þ

ðD

C
Qdx þ

ðA

D
Qdy ð25Þ

¼
ðl

2l
Qdx þ

ð2h

h
Qdy þ

ð2l

l
Qdx þ

ðh

2h
Qdy ð26Þ

by noting that:

sijvinj ¼ sxxvxnx þ sxyvxny þ syxvynx þ syyvyny ð27Þ

(and taking into account that the velocity components are

correctly signed in Jaeger’s (1969) solution), we have:

sijvinj





AB
¼ syyvy





AB
¼ 2

3hsv
2
b x2 2 l2
� 	
2t3

ð28Þ

sijvinj





BC
¼ sxxvx þ syxvy

� �



BC

¼ 2
3lhsv

2
b 9t4 2 12t2y2 þ 7y4
� 	

4t6
ð29Þ

sijvinj





CD

¼ syyvy





CD

¼ 2
3hsv

2
b x2 2 l2
� 	
2t3

ð30Þ

sijvinj





DA
¼ sxxvx þ syxvy

� �



DA

¼ 2
3lhsv

2
b 9t4 2 12t2y2 þ 7y4
� 	

4t6
ð31Þ

Upon evaluating the integrals the work rate due to forces

along the boundaries is:

4lhsv
2
b 24t2 þ 5l2
� 	

5t3
ð32Þ

which is equivalent to the expression for work rate

calculated by Mandal et al. (using their Eq. (A2) or

Eq. (15) above) for inside the shear zone. Therefore the

energy balance invoked by Mandal et al. is simply an

equality that cannot be used to derive further information

about the relationship between variables.

If this analysis is applied to the simple shear flow or to

the flattening flow in a shear zone with deformable walls of

Mandal et al., the result will be an equality as derived above

for the flattening flow. In fact, this equality is guaranteed by

the divergence theorem. Therefore, the relationships

between Sr, Wk, Df, and a derived by Mandal et al. are

incorrect.
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